Gate 2 Carbon Calculator

Introduction

- This tool calculates the carbon emissions in the construction of an asset (embodied carbon emissions) and the emissions associated with annual operation.
- The input data required is based on information available at Gate 2 such as capacity, e.g. 10Ml/d Activated Sludge plant.
- . Carbon emissions are calculated from carbon-curves, derived from a best fit line through an existing data set of emissions and capacity.
- The Net Present Costs (NPCs) are derived from emissions embodied in the construction of the asset and operational emissions over a 40 year period, with a 3.5% discount rate.
- The NPCs are calculated according to the latest Defra guidelines with the Shadow Price of Carbon based on 2009 prices (£27.60 rising by 2% each year).

User Guide

- The user should enter quantities in the light blue cells in columns D~J.
- Compulsory input requirements are specific to individual Design Manual Categories (DMCs) and may include:
 - Capacity (m³ or p.e.);
 - o Number of items;
 - Dosed flow (I/hr);
 - Pumping station power (kW) or flow (MI/d);
 - o Pipe diameter (mm), length (m), depth to invert (m) and location (field or highway); and
 - Tonnes of treated dry solids (TTDS).
- Annual Electricity Consumption is an optional input for some DMCs. When the major input has been entered, if a value for electricity appears in the Annual
 Electricity Consumption input cell, a default electricity usage has been calculated by the tool. This electricity usage is used in the calculation of operational
 emissions. If the user knows the electricity usage for the item, the default electricity can be overwritten and the tool will use this new electricity usage for
 operational emissions. Those items with no default electricity input require compulsory input of electricity usage for calculation of operational emissions.
- The 'Ancillary Works' category is a generic additional item to allow the user to make an allowance for construction of items that are not included in the
 principal DMC.
- Holding the mouse over column C will reveal a comment containing a description of the items included within each DMC. More detailed descriptions of the
 items included or excluded in a DMC are provided in the individual tabs for each DMC.
- · Carbon has been used throughout this tool to represent carbon dioxide equivalent.
- The carbon curves are presented for information only and do not allow user input. They will be updated by the administrator when additional data is
 available.
- If more than one instance of a DMC is required (e.g. for multiple diameters of water mains) the model should be run with the different capacities and the results recorded in the Record Sheet by clicking the "copy" button in the Design Manual Input Sheet.
- . A new copy of the Carbon Tool should be used for each project.

Process Emissions

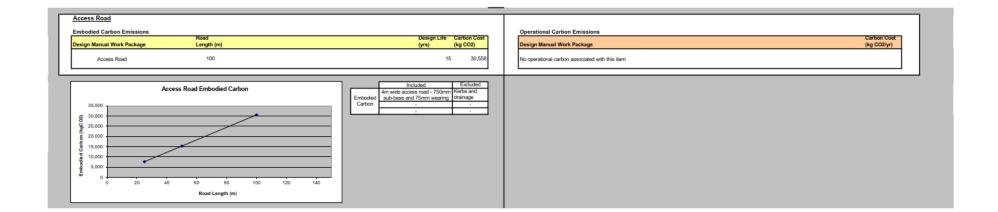
- The operational emissions calculated by this tool are typically in addition to the operational emissions reported annually in the June returns.
- The operational emissions for a number of additional treatment processes are taken from the UKWIR 08/WW/20/3 report and include direct emissions from
 operation of the process, indirect emissions from electricity use and chemical dosing and emissions associated with sludge disposal. These additional
 processes are:
 - activated carbon;
 - o biofilters;
 - o phosphorous removal;
 - activated sludge:
 - o sludge digestion; and
 - o tertiary treatment
- In all other treatment processes, direct emissions, emissions embodied in the production of chemicals and emissions as a result of additional sludge are excluded
- The reduction in NO₂ emissions downstream of an effluent discharge point that may result from improved levels of treatment are not included.

Related Documents:

Severn Trent Water Design Manual UKWIR report 08/WW/20/3 'Water Framework Directive: Sustainable Treatment Solutions for Achieving Good Ecological Status' Carbon Accounting PR09 Phase 1 report

Version Control

Revision	Purpose and Description	Originated	Checked	Reviewed	Date
	Final for issue to client				29/05/2009
1	Inclusion of Record Sheet				23/06/2009

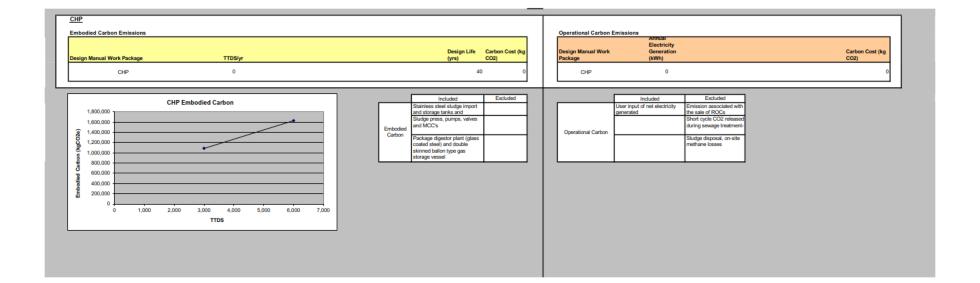

Project Ref.	Date	Author	Design Manual Category				User Input		Proposed Year of Construction	Design Life (yrs)	Embodied Carbon (CO₂eq)	Operational Carbon (CO₂eq/yr)	Net Present Cost of Carbon
Example	20/07/2009		Pumping Stations	10	Flow (MI/d)	443837	7 Annual Electricity C		2009	40	139,492	238,349	£204,586
			Sewage Pumping Stations		Pump Power (kW)		Pipe Length (m)	Depth to invert (m			1,133,971	920,220	£729,860
			contd	_	Pipe Diameter (mm)		Pipe Location	Annual Electricity					
			Chemical Phosphorous Removal	_	Dosed Flow (I/hr)		Annual Electricity C	onsumption (kWh)	2012			376,344	£291,878
			Flooring	_	Floor area (m2)				2012				£4,855
			Access Road		Road Length (m)				2012				£1,977
			Outfall Structures	_	No. of structures				2012		.,==-		£32
			Tunnelling & Low Dig Techniques	_	Tunnel length (m)				2012	40	106,660	•	£2,818
			Remote Asset Monitoring		No. of contra		A		2010		4.754	225 245	0470.000
			(Telemetry) Systems	-	No. of works		Annual Electricity C	onsumption (kvvn)	2012	20	1,751	235,215	£178,980
										Com Total	1,580,120	1,531,779	£1,210,400

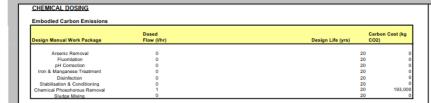
Severn Trent Water GATE 2 CARBON CALCULATOR

USER INSTRUCTIONS:

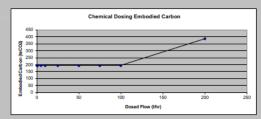
Enter quantities for required Design Manual Categories in the pale blue cells in this sheet in columns D to J. Some contain drop-down lists. Annual Electricity Consumption must be entered if a default (ITALICS) is not available. The default electricity consumption can be overwritten if there is more information. The Carbon Emissions and Net Present Cost are displayed in columns L to N. The Design Manual Category must be copied to the Record Sheet by clicking the button in column O to record the calculations.

Service Reservoirs & Water Retaining Capacity (m³)	al Electricity Consumption (kWh)	of Construction 2012 2009 2012 2012 2012 2012 2012 2009 2012	CO _{2eq} (kgCO _{2eq}) 0 0 0 0 0 0 0	CO _{2xq} (kgCO _{2xx} /yr) 0 0 0 0 0	Cost of Carbon £0 £0 £0 £0 £0 £0 £0 £0 £0 £0 £0	Record Sheet
Service Reservoirs & Water Retaining Capacity (m²)	al Electricity Consumption (kWh) all Electricity Consumption (kWh)	2009 2012 2012 2012 2012 2012 2009	0 0 0	0 0 0	03 03 03 03	
Structures	al Electricity Consumption (kWh)	2012 2012 2012 2012 2012 2009	0 0 0	0 0 0 0	£0 £0 £0	
Fluoridation	al Electricity Consumption (kWh)	2012 2012 2012 2012 2009	0 0	0 0 0 0	£0 £0	
pH Correction Dosed Flow (liftr) Annua Clarification Capacity (Mid) Annua Water Resources and Treatment Activated Carbon - Removal of Endocrine Disruptors (Full flow) Activated Carbon - Removal of Endocrine Disruptors (Full flow) Activated Carbon - Removal of Endocrine Disruptors (Full flow) Activated Carbon - Removal of Endocrine Disruptors (Full flow) Activated Carbon - Removal of Pesticides Enw. (Mid)	al Electricity Consumption (kWh) al Electricity Consumption (kWh) al Electricity Consumption (kWh) al Electricity Consumption (kWh)	2012 2012 2009	0	0 0 0	£0	
Clarification Capacity (Mid) Annua	al Electricity Consumption (kWh) al Electricity Consumption (kWh) al Electricity Consumption (kWh)	2012 2009	0	0	60	
Water Resources and Disruptors (Full flow) Annua Flow (Mild) Annua Annua Activated Carbon - Removal of Endocrine Disruptors (Full flow) Flow (Mild) Annua Annua Activated Carbon - Removal of Pesticides Flow (Mild) Annua Annua Activated Carbon - Removal of Pesticides	al Electricity Consumption (kWh) sal Electricity Consumption (kWh)	2009	0	0		
Water Resources and Disruptors (Full flow) Treatment Activated Carbon - Removal of Endocrine plant (Mild) Activated Carbon - Removal of Pesticides Activated Carbon - Removal of Pesticides	al Electricity Consumption (kWh)			0	£0	
and Disruptors (Full flow) Plow (Mild) Annua Treatment Activated Carbon - Removal of Pesticides Flow (Mild) Annua		2012	0			
Activated Carbon - Removal of Pesticides Flow (Mild) Appuil	al Electricity Consumption (kWh)			0	£0	
(Full flow)		2012	0	0	£0	
Activated Carbon - Removal of Zinc (Full Flow (Mild) Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
Iron & Manganese Treatment Dosed Flow (I/hr) Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
	al Electricity Consumption (kWh)	2012	0	0	£0	
	al Electricity Consumption (kWh)	2012	0	0	£0	
	al Electricity Consumption (kWh)	2012	0	0	£0	
	eter (mm)	2012	0		60	
	h to invert (m)	2012	U		EU	
	al Electricity Consumption (kWh)	2014	0		£0	
Distribution	eter (mm)	2014	0	U	£0	
	h to invert (m)	2009	٥		EU	
	Length (m) 3.5 Depth to invert (m)	2012	1,133,971	920,220	£729,860	
	Location 1713568 Annual Electricity Co					
	eter (mm)	2012	0		£0	
	h to invert (m)					
Manholes No.		2012	0	-	£0	
Inlet Works m³/d Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
Primary Sedimentation Capacity (m ³) Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
	al Electricity Consumption (kWh)	2012	0	0	£0	
	al Electricity Consumption (kWh)	2012	122,182	376,344	£291,878	
Activated Sludge Process Capacity (p.e.) Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
Enhanced Biological Phosphorous Capacity (p.e.) Removal Capacity (p.e.)	al Electricity Consumption (kWh)	2012	0	0	£0	
Treatment Sludge Digestion (new plant) TTDS per annum Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
Sludge Thickening - Centrifuge Dewatering TTDS per annum Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
Sludge Thickening - Sludge Press No. of works Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
Studge Drying TTDS per annum Annua	al Natural Gas Consumption (kWh)	2012	0	0	£0	
	al Electricity Consumption (kWh)	2012	0	0	£0	
	al Electricity Consumption (kWh)	2012	0	0	£0	
Small Sewage Treatment Works Capacity (p.e.) Annua	al Electricity Consumption (kWh)	2012	0	0	£0	
Flooring Floor area (m²)		2012	183,775		£4,855	
Access to Assets Guarding of Equipment No. of works		2012	0		£0	
	al Electricity Consumption (kWh)	2012	0	0	£0	
Access Road Road Length (m)		2012	30,558		£1,977	
Civil Outfall Structures No. of structures		2012	1,223		£1,977	
Engineering Tunnelling & Low Dig Techniques Tunnell length (m)		2012	106,660		£2,818	
Environmental and Landscape No. of sites Remote Asset Monitoring (Telemetry) No. of works Annua	al Electricity Consumption (kWh)	2012	1,751	235,215	£178,980	
Other Systems Systems						
	al Electricity Consumption (kWh)	2012	0	0	£0	
Site Investigation No. of sites		2012	0		60	
Ancillary Works No. of works		2012	0		£0	
Renewable Energy TTDS per annum Power	er generated per annum (kWh)	2012	0	0	£0	





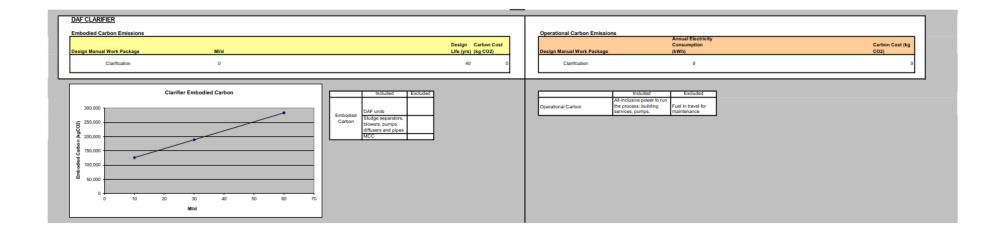
Ancilliary Works				_	
Embodied Carbon Emissions					Operational Carbon Emissions
Design Manual Work Package	No. of works	Design Life Total E (yrs) Carbon	bodied kg CO2)		Carbon Cost Design Manual Work Package (kg C02/yr)
Ancilliary Works	0	40	0		No operational carbon associated with this item
		Included Connecting pipework; 50m 150mm DI Fending, 50m chain link 2.4m highlighted Carbon Embodied Carbon Carbon Bender (700kg cast tror) and a 2m by 2m by 2m concrete chamber with 300mm thick walls			



sign Manual Work Package	No. of Boreholes	Design Life Total Embodied (yrs) Carbon (kg CO2)	Operational Carbon Emissions Design Manual Work Package	Annual Electricity Consumption (kWh)	Carbon Cost (kg CO2/yr)
Boreholes	0	20 0	Boreholes	0	0
		Included Excluded Borehole with grouted in place Embodied Carbon Carbon Pumps valves, motors and MCC est pumping Concrete headworks			Included Excluded AM-Inclusive Operational power to nut the Carbon services, pumps. Included Excluded Fuel in travel for process: building for services, pumps.

		Default Annual	
	Dosed Flow	Electricity	Carbon Cost
esign Manual Work Package	(l/hr)	(kWh)	(kg CO2/yr)
Arsenic Removal	0	0	0
Fluoridation	0	0	0
pH Correction	0	0	0
Iron & Manganese Treatment	0	0	0
Disinfection	0	0	0
Stabilisation & Conditioning	0	0	0

	Included	Excluded
	Bunded dosing area: concrete construction	Emergency shower / eyewash, control panel.
Embodied Carbon	Bulk storage tank: plastic construction	Access
Carbon	Pumped pipework	Control hardware
$ldsymbol{le}}}}}}}}}$	Delivery of tank and pipework to site	


	Operational En	issions		
250				
(A) 200				
2 150				
100				
50				
50	100	150	200	250
•	Dosed F	low (l/hr)		

	Included	Excluded
Operational Carbon	Chemical delivery to site Dose pump power	Specific chemical manufacture Carrier flow if applicable
		Emissions from any sludge generated

	CARBON REI	LATIONSHIP	
		Dosed	
	teCO2	Flow (l/hr)	
	193	0.2	0
	193	1.0	STW Carbon Calculations for PR09
	193	5.0	8 0
	193	10	6.6
	193	25	8 8
	193	50	> g
	193	75	S S
	193	100	3 1
	387	200	0
			User Input following Update to Carbon Calculations
			User Input fol
Scaling factor relationship validity limits (l/hr)	0.2	200	
Scaling Factor (slope)	1.93		
Scaling Factor (intercept)			

	CARBON REI	ATIONSHIP	
		Dosed Flow	
	teCO2/yr	(Vhr)	
	3.3	0.2	
	3.3	1.0	8
	6.6	5.0	g 0.
	10	10	6.5
	27	25	3 €
	50	50	≯ og
	73	75	5 5
	100	100	STW Carbon Calculations for PR09
	196	200	0
			User Input following Update to Carbon Calculations
aling factor relationship validity			
limits (l/hr)		200	
Scaling Factor (slope)	0.9		
Scaling Factor (intercept)	1.8	31	

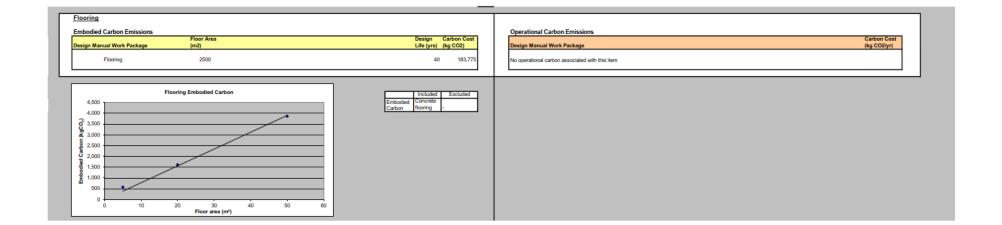
Note UKWIR sustain tool not used for comparison as cannot be compared directly given inclusion of chemicals.

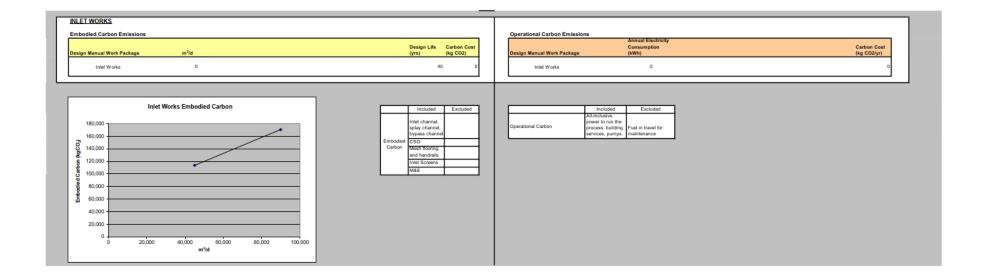
Embodied Carbon Emissions Design Manual Work Package	No. of sites	Design Life Carbon Cost (yrs) (kg CO2)	Operational Carbon Emissions Design Manual Work Package	Carbon Cost (kg CO2/yr)
Environmental and Landscape	0	15 0	No operational carbon associated with this item	
		Included Excluded		

Equipment Guarding

Embodied Carbon Emissions

Design Manual Work Package No. of sites Life (yrs) (kg CO2)


Guarding of Equipment 0 20 0


Operational Carbon Emissions

Carbon Cost
Design Manual Work Package
(kg C02/yr)

No operational carbon associated with this item

Included Excluded
Installation
of new
Carbon gate and
fencing -

LIFTING EQUIPMENT Embodied Carbon Emissions Operational Carbon Emissions Annual Electricity Consumption (kWh) No. of plants Design Carbon Cost Life (yrs) (kg CO2) Carbon Cost (kg CO2/yr) Design Manual Work Package Design Manual Work Package 0 Lifting Equipment 20 Lifting Equipment 0 Included Excluded

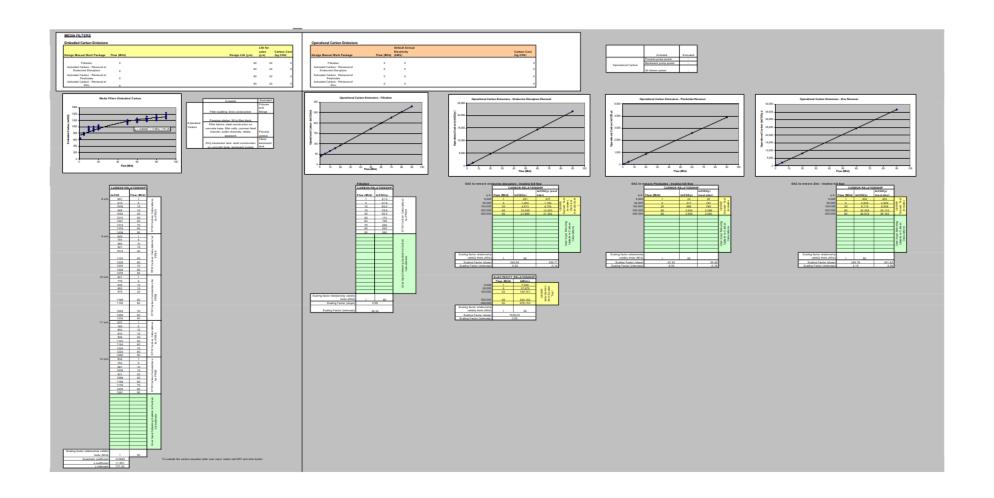
All-inclusive power to run
the process: building
services, pumps. Fuel in travel for
maintenance Steel frame and winch Operational Carbon

MANHOLES
Embodied Carbon Emissions

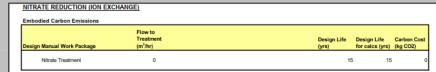
Design Manual Work Package Manholes

Uife (yrs) (kg CO2)

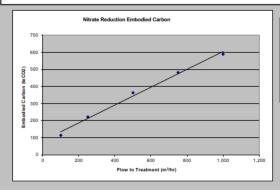
Manholes

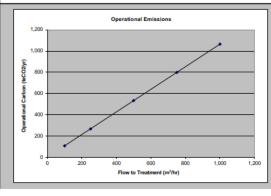

Operational Carbon Emissions

Operational Carbon Emissions


Operational Carbon Emissions

Design Manual Work Package (kg CO2)yr)


No operational carbon associated with this item


Monitoring and Telemetry Embodied Carbon Emissions Operational Carbon Emissions Annual Electricity Design Life Carbon Cost (yrs) (kg CO2) Carbon Cost (kg CO2/yr) No. of works Consumption (kWh) Design Manual Work Package Design Manual Work Package Remote Asset Monitoring (Telemetry) Systems 20 1,751 Remote Asset Monitoring (Telemetry) Systems 235,215 Included Excluded
All-inclusive
power to run the
process: building
services, pumps. Excluded Included Embodied MCC, Cabinet and cabling Operational Carbon

Operational Carbon Emissions Design Manual Work Package	Flow to Treatment (m3/hr)	Derault Annual Electricity (kWh)	Carbon Cost (kg CC2)
Nitrate Treatment	0	0	0

	Included	Excluded
	Treatment building: concrete base slab, steel wall and roof construction, steel pipework, pumps, strainers.	Internal walls, fixtures and fittings.
Embodied	IX Vessels: concrete slab, steel pressure vessels.	Pipework other than main process.
Carbon	Salt / Waste bund: high-sided concrete bund containing duty / assist salt bulk storage and duty waste tanks.	Media manufacture.
	New length of water main to form bypass	

	Included	Excluded
erational arbon	All-inclusive power to run the process: building services, booster pumps, regeneration, waste transfer.	Any emissions from salt residue
arbon	Salt transport to bulk storage.	Salt manufacture

OUTFALL STRUCTURES

Embodied Carbon Emissions

Design Manual Work Package

No. of

Design Manual Work Package

Structures

1

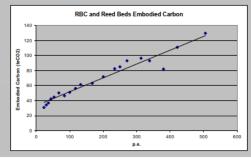
Design Carbon Cost
Life (yrs) (kg CO2)

Outfall Structures

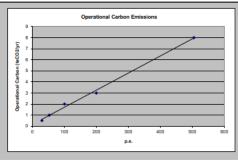
1

Design Carbon Cost
Life (yrs) (kg CO2)

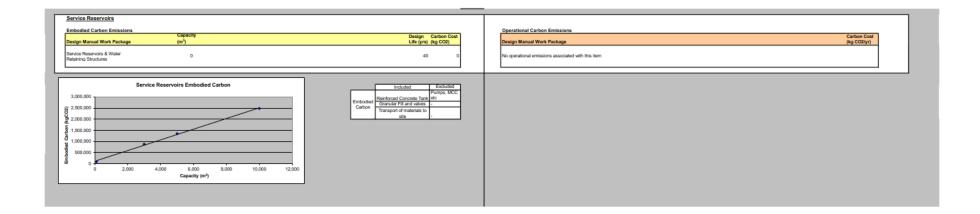
No operational Carbon Emissions

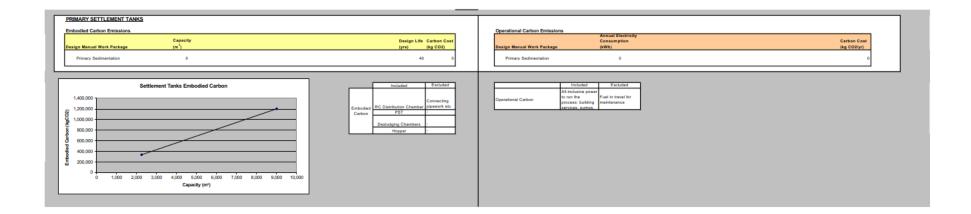

Design Manual Work Package

Design Manual Work Package
No operational carbon associated with this item



	Capacity	Default Annual	Carbon Cost (kg
Design Manual Work Package	(p.e.)	Electricity (kWh)	CO2)
Small Sewage Treatment Works	0	0	0



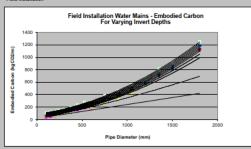

	Included	Excluded
	RBC: concrete base, size- dependent GRP or concrete tank, GRP cover, steel shaft and media holders, polypropylene	Pumping to treatment. Gravity flow is assumed.
Embodied Carbon	Reed bed: sand base, bed lining, lining protection, gravel fill, outlet chamber and ductile iron decant arm, transport of materials	
	Pipes: inlet, outlet and distribution	

	Included	Excluded
	RBC shaft motor	Process control and panel services
perational Carbon		Any emissions from reed bed process and sludge produced by RBC

Security and Fencing **Embodied Carbon Emissions** Operational Carbon Emissions Annual Electricity No. of works Carbon Cost Design Life (yrs) (kg CO2) Carbon Cost (kg CO2/yr) Consumption (kWh) Design Manual Work Package Design Manual Work Package 0 20 0 Security and Fencing Security and Fencing Included Excluded
Security doors,
padicicks, intruder
Embodied
Carbon
and access control
system
Gate and Fencing Included Excluded All-inclusive power to run the process: building services, pumps. Fuel in travel for maintenance Operational Carbon

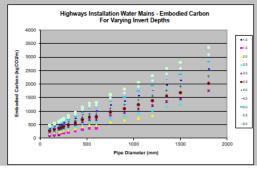
SEWERAGE PIPELINES

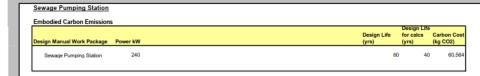
Em	bodied	Carbon	Emissio

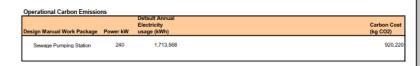

Design Manual Work Package	Length (m)	Diameter (mm)	Depth (m)	Field/Hig hway												Design Life (yrs)	Life for calcs (yrs)	Carbon Cost (kg CO2)
					1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0			
Sewer Rehabilitation	0	0	0	0								0				100	40	0
Sewage Pumping Stations	3690	700	3.5	Field						1E+06		0				100	40	1,073,407

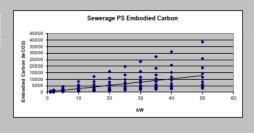
Operational Carbon Emissions

Carbon Cost sign Manual Work Package (kg CO2)

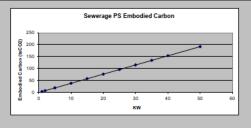

No operational carbon associated with this item No operational carbon associated with this item


Field Installation




	Included	Excluded
Embodied	Pipes: materials, transport to site, bed, surround and trench reinstatement	Materials other than VC or Ductile Iron
Carbon	Trench reinstatement	CSOs
	Manholes. Covers and frames	Pumping stations

Highways Installation



	Included	Excluded
	Concrete blinding, base and	Step irons
Embodied Carbon	Pre-cast concrete rings and roof slab	
	Pipework incoming and	Pump

	Included	Excluded
Operational Carbon	Pump power electricity	Maintenance and inspection

Site Investigation

Embodied Carbon Emissions

Design Manual Work Package No. of sites

Operational Carbon Cost (kg CO2)

Site Investigation

Operational Carbon Emissions

Design Manual Work Package
No. of sites

Operational Carbon Emissions

Design Manual Work Package
No. of sites

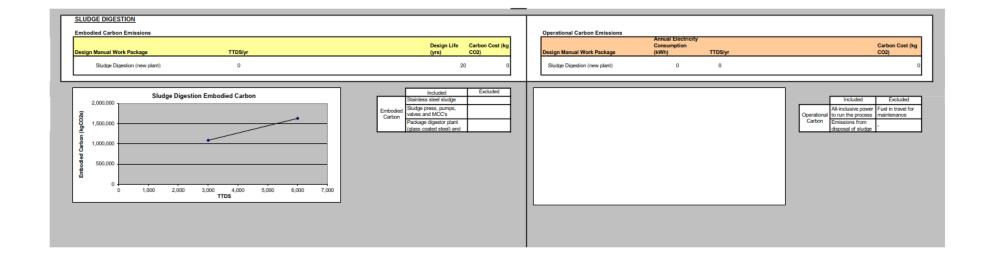
Operational Carbon Emissions

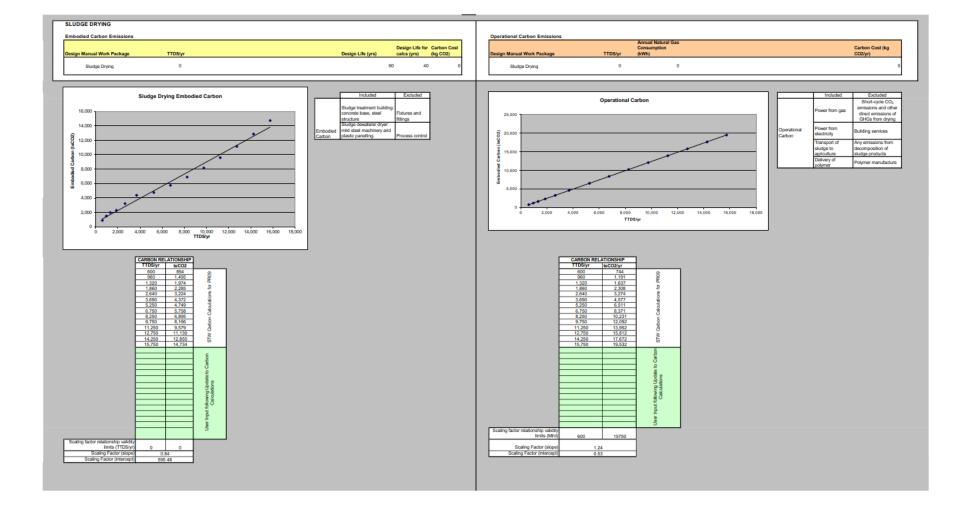
Design Manual Work Package
No. of sites

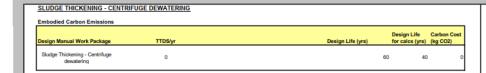
Operational Carbon Emissions

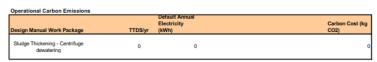
Design Manual Work Package
No. of sites

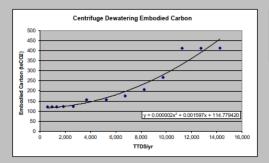
Operational Carbon Emissions

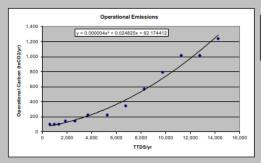

Design Manual Work Package
No. of sites


Operational Carbon Emissions


Design Manual Work Package
No. of sites


Operational Carbon Emissions


Design Manual Work Package
No. operational carbon associated with this item



CARBON RELATIONSHIP

	Included	Excluded
Embodied	Sludge treatment building: steel construction on concrete slab	Fixtures and fittings
Carbon	Centrifuge machines: steel construction	Odour control. Process control. Conveyors.

	HUStyr	teCO2		
	600	121		
	960	121	.5	
	1,320	121	22	
	1,860	123	<u>Q</u>	
	2,640	123	20	
	3,690	156	2 0	
	5,250	156	STW Carbon Calculations for PR09	
	6,750	176	8 -	
	8,250	207	1 🖁	
	9,750	268	Ø	
	11,250	412	1 2	
	12,750	412	ξη.	
	14,250	414	1	
			User Input following Update to Carbon Calculations	
			ě	
			2 2	
			三黃	
			2.3	
			8.78	
			등은	
			5.8	
			문동	
			E 0	
			ă,	
			_	
Scaling factor relationship validity				
limits (TTDS/yr)	600	14250		
Quadratic coefficient	0.000002			To update the carbon equation after user input
x coefficient				
y intercept	114.77942			
уппиносря				

	600	121		
ı	960	121	į.	
	1,320	121	STW Carbon Calculations for PR09	
	1,860	123	, Q	
	2,640	123	- 3	
	3,690	156	<u> </u>	
	5,250	156	요윤	
	6,750	176	8 -	
	8,250	207	뚩	
	9,750	268	9	
	11,250	412	2	
	12,750	412	(O)	
	14,250	414		
			_	
			20	
			¥	
			ĕ.5	
			5.6	
			- <u>₽</u> . <u>В</u>	
			58	
			20 0	
			젊은	
			-50	
			User Input following Update to Carbon Calculations	
ı			5	
ty				
r)	600	14250		T
nt nt	0.000002			To update the carbon equation after user input, select cell D63 and click button
	0.001597			

1	ELATIONSHIP	CARBON RE	
	teCO2/yr	TDS/yr	
	102	600	
	102	960	
12	102	1,320	
, i	142	1,860	
20	142	2,640	
20	224	3,690	
0.8	224	5,250	
STW Carbon Calculations for PR09	346	6,750	
	570	8,250	
Ö	794	9,750	
] }	1,017	11,250	
SO .	1,017 1,241	12,750	
	1,241	14,250	
<u> </u>			
5000			
202			
523			
G 8 8			
2 20			
Uber Input following Update to Carbon Calculations			
			Scaling factor relationship validity
	14250	600	limits (TDS/yr)
		0.000004	Quadratic coefficient
To		0.024825	x coefficient

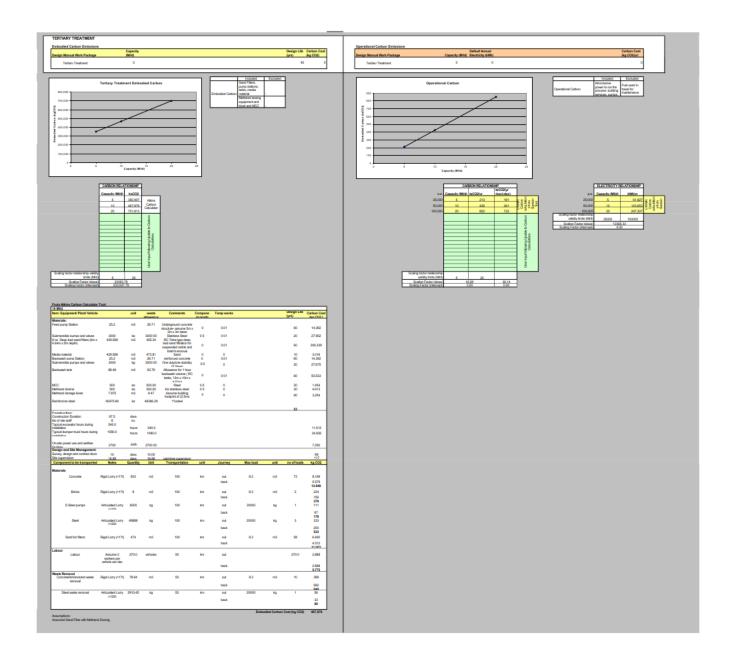
To update the carbon equation after user input, select cell Q60 and click button

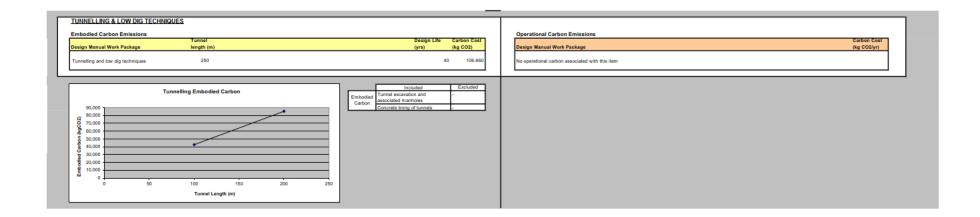
Electrical Building services, power to run centrifuge labour

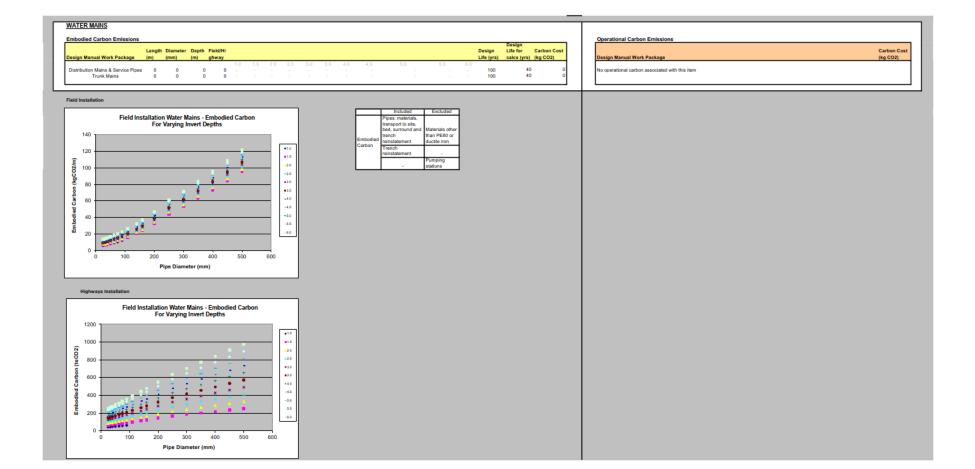
Any emissions from decomposition of sludge products

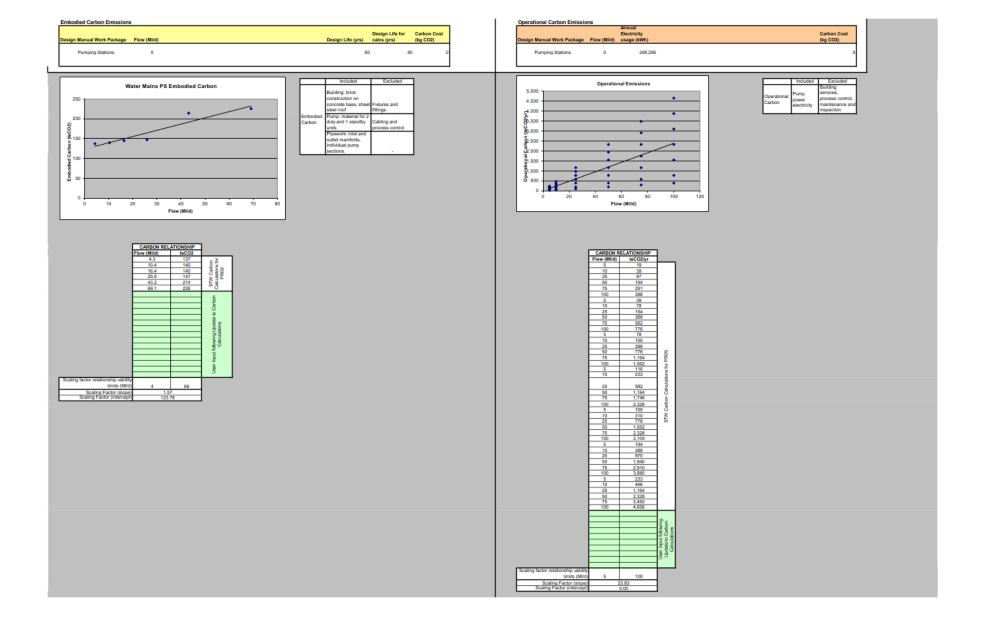
Operationa Carbon

SLUDGE THICKENING - SLUDGE PRESS Embodied Carbon Emissions No. of works Design Life Carbon Cost (yrs) (kg CO2) Design Manual Work Package 0 20 Sludge Thickening - Sludge Press


	Included	Excluded
Embodied Carbon	Sludge press	Pumps and valves
	Associated MCC	


Operational Carbon Emissions


E			waste	Comments		T				Carbon Cos
tem: Equipment/ Plant/ Vehicle		unit	allowan ce	Comments	Compo nent prodn	Temp works			Design Life (yrs)	(kg CO2)
Materials:					DIOUII					
Rotomat SP4 Strainpress RC slab 20 m2 x 300 deep.	6	m3	6.36	Reinforced concrete	0	0.01			60	3,427
Duty and Standby or Duty and Assist Rotomat SP4 Strainpress has capacity of 60 m3/h at 6% DS	1000	kg	1000	Stainless steel	0.65				20	10,148
each.										
Steel for RC	48	kg	51.072							
MCC	500	kg	500	Steel					20 29	969
Construction:										
Construction Duration	10.0	days								
No of site staff	4	no.								
Typical excavator hours during installation	80.0	hours	80.0							1,705
Typical dumper truck hours during installation	80.0	hours	80.0							2,588
On-site power use and welfare facilities	200	kWh	200.00							537
Design and Site Management: Survey, design and contract docs	5	days	5.00							35
		uays		full-time						30
Site supervision	2.50	days	2.50	supervision						17
Component to be transported	Notes	Quantity	Unit	Transportatio n distance	unit	Journey	Max load	unit	no of loads	kg CO2
Materials										
Steel, MCC	Articulated Lorry (>33t)	551	kg	100	km	out	20000	kg	1	111
						back				67 178
Concrete	Rigid Lorry (>17t)	6	m3	100	km	out	8.3	m3	1	112
						back				78
										190
Strainpress	Articulated Lorry (>33t)	80	kg	800	km	out	20000	kg	1	889
	Lurry (>331)					back				534
Labour										1.422
Labour	Assume 2 workers per vehicle per day	20.0	vehicles	50	km	out			20.0	214
						back				214
Waste Removal										428
Excavated material	Rigid Lorry (>17t)	0 36	m3	50	km	out	83	m3	1	39
	(- 114)					back				56 95


Assumptions: 1x 60m3/h press

perational Carbon Emission	s		
esign Manual Work Package		Annual Electricity Consumption (kWh)	Carbon Cost (kg CO2)
Sludge Thickening - Sludge Press		0	0
	Included	Excluded	
perational Carbon		Fuel in travel for maintenance	

Waste Street	Participant Police and by referred to comparison to the state of column	Properties of weets by volume in comparison of the properties.
Pantic	11.176	E-910
Jours	19.3%	8.40
Street	2.0%	8.676
Fernie	5.0%	8.004
Generalis	6.0%	11.000
Insolution	6.0%	1.045
Serv	1.8%	1.00

Gammanust	Rouge Intensity	Santonimonin		
	1800a	in Moh		
in South to	100	10		
m-1975	200	440		
Marial	Francisco In	Garbon to	turnity	Standar
	18/169	to Sticke	Na GOVA	ben'
armed Committee	100	2.00	50	244
hitlimet Smoote	181	150	50	0.05
arment .	44	440	1000	104
server from . Server i serverin	100	0.00 0.000 0.000		190 190 191
Italities Steel	50.6	6.6		Tallogia
Stat Street		168		100
and from		240		600,700
intracts (General storamously	e a proof	94694	101.44	886
Name of the last o		1.0		
provide main platest us. Sealerts not distractions (creations panel)		6.00		
Innies		136		
has fluidiment Plants (GRP) non efficielles annimal desse as annal properties		128		1867.4
to the distance of the other to		6-6	60	200
to reduce		629		-
nump us		11	1000	100
Sales.		BECODERY.		

Although Factors				President and annual state of	Futies						Specializary Estimates Ferrica		THE PERSON NAMED IN				Set Propert God	per R man h	21 M 60.	_
House Interesty	Garteninsoniny			William	ing title, per miles	Agrico, par im-					Number anisators factors		National Component	Heren	Distances from	Saura to				
Militar	ber Sillerber			Patrician 1.6.4 (Kilos	1.160	0.00					Grec, 67°, 5554	AMPN apose-wee	Mains Phys. Carrie Inc.		-	-	Storage Little	200		201
1144	100			Character and Character States	0.000	0.000					\$10,07,000,5asse,7as	6.694 ap.000/sees	Naire Plys. PGPE		40	-	**	6.0676	2-00M	0.00
768	410										New Coult Sustain See	6296 apoconimo	Regio	For bring olyapes	100	in	24	6.060	1444	004
Brang-Intensity	Garten is		Stenaty	Stead Faight Transport Emission A.			Fuel innumies		Estimated Sam	A			Sensori nomente Street	Assembly to Milkely	100	-	24.	6.000	0.044	204
101	ing Killeling 2: Cit.	Ng GOLON'	age.	100.00	Swignteen	Fuel parties (I)	-	Silv Britalander	Patrickerson				Studios Stud	Assumers to the same	100		-	11070		100
181	150	50	205						-	**			Sound Street W		-		Sanatane	196	100	
10	140	168	106	Plant any critis	6%			100		All			induktioner		-	-				_
	2.0	-	790	(Spot any 17-17)	HOUSE.			1.10		44	l		NAME OF THE OWN		-					
21.00	2408	9.46	100	Andread on 1980	100			100	Marino.				Pursus - next innovations	a basi	-	100				
50.6	4.6		100,000										Labour	Aways committing disperse of all counts from		-				
	168		100	Site Welche und Plant Weights auf	ar to protect ancient.						1		Standard Oxford Statement	Libert for reluced lawrence	100					
	240		400.700		Olis Resissions								Support Instruct tip	For exception and seate	_	-				
et an a propert	9459	40.44	200		deltest									0000	_					
	1.0			Anticulated Burry Frank (St. 80) Renounce Medium 11, Montenes	100															
en e	6.00			Ш.																
	136			Section No.	100															
PI	126		1804																	
	47	60	200																	
	12 18		100																	
	Becomes			1																
to officia design tomar and	630																			

	Natural Component	Heren	Digital State	- Seur
April Control	Mains Phys. Charlis Inc.		-	
0.140	Natur Plys. HERE		400	100
No.	Resin	For kining orlyspess	100	in
	Serveral removate		100	in the
	Street	Assembly to Mill your	100	
	Shairless Sheet		100	
	Scool-Granule SI		100	
	Sophuk Ritumen		100	
	Purses - next innovations of GMP	and a	-	
	Labour	Aways communing distance of allowers from		in
	Standard Calcult Statutes	Unartie Hospitaness	100	in
	Season Francis Sp.	For accounted and seeks		100

			*			
Straige Life	200	2810	2011	260	2010	20 K
18.	6.0676	2-0066	0.0000	0.002	0.0000	6.0800
26	6.0862	2445	0.046	0.0001	6466	6.040
26.	6.060	2444	0.054	0.046	6001	6.0005
14.	6.000	1444	2004	1000	6991	6.0015
**	610%	9689	0.096	01064	61061	64907
Swatter	6.060	2496	9.7604	4700	6796	62961