The content of this document is draft and relates to material [or data] which is still in the course of completion in travel to Gate 2 and should not be relied upon at this early stage of development. We continue to develop our thinking and our approach to the issues raised in the document in preparation for Gate 2.

Gate 2 Carbon Calculator

Introduction

- This tool calculates the carbon emissions in the construction of an asset (embodied carbon emissions) and the emissions associated with annual operation.
- . The input data required is based on information available at Gate 2 such as capacity, e.g. 10Ml/d Activated Sludge plant.
- Carbon emissions are calculated from carbon-curves, derived from a best fit line through an existing data set of emissions and capacity.
- The Net Present Costs (NPCs) are derived from emissions embodied in the construction of the asset and operational emissions over a 40 year period, with a 3.5% discount rate.
- The NPCs are calculated according to the latest Defra guidelines with the Shadow Price of Carbon based on 2009 prices (£27.60 rising by 2% each year).

User Guide

- The user should enter quantities in the light blue cells in columns D~J.
- . Compulsory input requirements are specific to individual Design Manual Categories (DMCs) and may include:
 - Capacity (m³ or p.e.);
 - Number of items:
 - Dosed flow (I/hr);
 - Pumping station power (kW) or flow (MI/d);
 - Pipe diameter (mm), length (m), depth to invert (m) and location (field or highway); and
 - Tonnes of treated dry solids (TTDS).
- Annual Electricity Consumption is an optional input for some DMCs. When the major input has been entered, if a value for electricity appears in the Annual
 Electricity Consumption input cell, a default electricity usage has been calculated by the tool. This electricity usage is used in the calculation of operational
 emissions. If the user knows the electricity usage for the item, the default electricity can be overwritten and the tool will use this new electricity usage for
 operational emissions. Those items with no default electricity input require compulsory input of electricity usage for calculation of operational emissions.
- The 'Ancillary Works' category is a generic additional item to allow the user to make an allowance for construction of items that are not included in the principal DMC.
- Holding the mouse over column C will reveal a comment containing a description of the items included within each DMC. More detailed descriptions of the
 items included or excluded in a DMC are provided in the individual tabs for each DMC.
- · Carbon has been used throughout this tool to represent carbon dioxide equivalent.
- The carbon curves are presented for information only and do not allow user input. They will be updated by the administrator when additional data is
 available.
- If more than one instance of a DMC is required (e.g. for multiple diameters of water mains) the model should be run with the different capacities and the results recorded in the Record Sheet by clicking the "copy" button in the Design Manual Input Sheet.
- · A new copy of the Carbon Tool should be used for each project.

Process Emissions

- The operational emissions calculated by this tool are typically in addition to the operational emissions reported annually in the June returns.
- The operational emissions for a number of additional treatment processes are taken from the UKWIR 08/WW/20/3 report and include direct emissions from
 operation of the process, indirect emissions from electricity use and chemical dosing and emissions associated with sludge disposal. These additional
 processes are:
 - activated carbon;
 - biofilters;
 - o phosphorous removal;
 - activated sludge;
 - o sludge digestion; and
 - tertiary treatment
- In all other treatment processes, direct emissions, emissions embodied in the production of chemicals and emissions as a result of additional sludge are excluded.
- The reduction in NO₂ emissions downstream of an effluent discharge point that may result from improved levels of treatment are not included.

Related Documents:

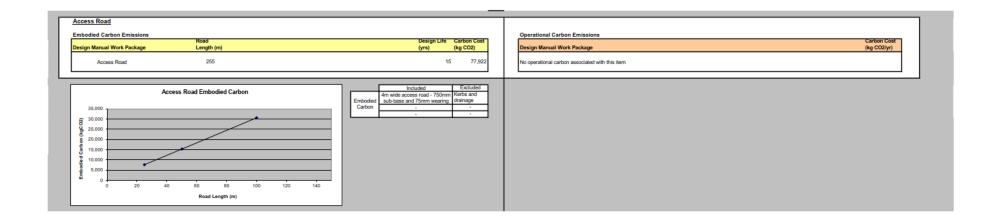
Severn Trent Water Design Manual UKWIR report 08/WW/20/3 'Water Framework Directive: Sustainable Treatment Solutions for Achieving Good Ecological Status' Carbon Accounting PR09 Phase 1 report

Version Control

Revision	Purpose and Description	Originated	Checked	Reviewed	Date
0	Final for issue to client				29/05/2009
1	Inclusion of Record Sheet				23/06/2009

Project Ref.	Date	Author	Design Manual Category			User Input	Proposed Year of Construction	Design Life (yrs)	Embodied Carbon (CO₂eq)	Operational Carbon (CO₂eq/yr)	Net Present Cost of Carbon
Example	20/07/2009		Pumping Stations	Flow (MI/d)		Annual Electricity Consumption (kWh)	2009	40	139,492	238,349	£204,586
			Remote Asset Monitoring								
			(Telemetry) Systems	No. of works		Annual Electricity Consumption (kWh)	2012		1,751	282,258	£214,760
			Outfall Structures	No. of structu	res		2012		1,223		£32
			Environmental and Landscape	No. of sites	2)		2012		1,663		£108
			Flooring	Floor area (m			2012		91,977		£2,430
			Access Road	Road Length	(m)		2012	2 15	77,922	•	£5,041
			Co-Mag (Manual Input)						261,023	282,258	
			, , , , , , , , , , , , , , , , , , , ,								
								Sum Total	435,559	564,515	£222.371
								oun rotar	-100,000	00-1,010	~EEE,011
								tCO2e	436	565	
								ICOZE	430	303	

ST Classification: OFFICIAL PERSONAL

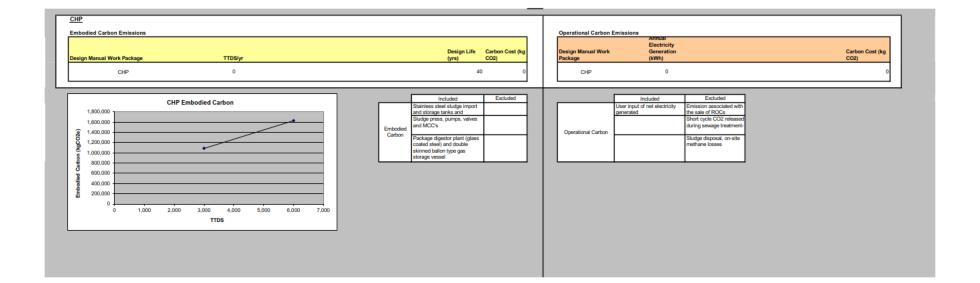

GATE 2 CARBON CALCULATOR

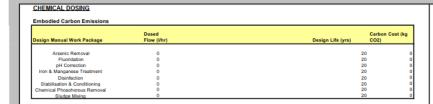
USER INSTRUCTIONS:

Enter quantities for required Design Manual Categories in the pale blue cells in this sheet in columns D to J Some contain drop-down lists Annual Electricity Consumption must be entered if a default (ITALICS) is not available. The default electricity consumption can be overwritten if there is more information. The Carbon Emissions and Net Present Cost are displayed in columns L to N. The Design Manual Category must be copied to the Record Sheet by clicking the button in column O to record the calculations

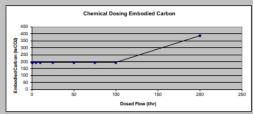
	Design Manual Category			Use	r Input			Proposed Year of Construction	Embodied CO _{2eq} (kgCO _{2eq})	Operational CO _{2eq} (kgCO _{2eo} /yr)	Net Present Cost of Carbon
	Boreholes		No of boreholes		Annual Electricity Co	nsumption (kWh)	2012	0	0	£0
	Service Reservoirs & Water Retaining Structures		Capacity (m ³)		•			2009	0		£
	Arsenic Removal		Dosed Flow (I/hr)		Annual Electricity Co	nsumption (kWh)	2012	0	0	£
	Fluoridation		Dosed Flow (I/hr)		Annual Electricity Co	nsumption (kWh)	2012	0	0	£
	pH Correction		Dosed Flow (I/hr)		Annual Electricity Co	nsumption (kWh)	2012	0	0	£
	Clarification		Capacity (MI/d)		Annual Electricity Co	-		2012	0	0	£
Water	Filtration		Flow (MI/d)		Annual Electricity Co	nsumption (kWh)	2009	0	0	£
Resources and Treatment	Activated Carbon Removal of Endocrine Disruptors (Full flow)		Flow (MI/d)		Annual Electricity Co	nsumption (kWh)	2012	0	0	£
Treatment	Activated Carbon - Removal of Pesticides (Full flow)		Flow (MI/d)		Annual Electricity Consumption (kWh)			2012	0	0	£
	Activated Carbon Removal of Zinc (Full flow)		Flow (MI/d)		Annual Electricity Co	nsumption (kWh)	2012	0	0	£
	Iron & Manganese Treatment		Dosed Flow (I/hr)		Annual Electricity Co		_	2012	0	0	£
	Nitrate Treatment		Flow to Treatment (m³/hr)		Annual Electricity Co			2012	0	0	£
	Disinfection		Dosed Flow (I/hr)		Annual Electricity Consumption (kWh)		2012	0	0	£	
	Stabilisation & Conditioning		Dosed Flow (I/hr)		Annual Electricity Co	nsumption (kWh)	2012	0	0	£
	Distribution Mains & Service Pipes		Length (m)		Diameter (mm)			2012	0	-	£
Water	contd		Pipe Location		Depth to invert (m)						
Transfer and	Pumping Stations		Flow (MI/d)		Annual Electricity Co	nsumption (kWh)	2014	0	0	
Distribution	Trunk Mains		Length (m)		Diameter (mm)			2009	0		£
	contd		Pipe Location		Depth to invert (m)						
	Sewage Pumping Stations		Pump Power (kW)		Pipe Length (m)		Depth to invert (m)	2012	0	0	£
l	contd		Pipe Diameter (mm)		Pipe Location		Annual Electricity Co	onsumption (kWh)			
Sewerage	Sewer Rehabilitation		Sewer Length (m)		Diameter (mm)			2012	0	-	£
	contd		Pipe Location		Depth to invert (m)						
	Manholes		No					2012	0		£
	Inlet Works		m ³ /d		Annual Electricity Co	nsumption (kWh)	2012	0	0	£0
	Primary Sedimentation		Capacity (m ³)		Annual Electricity Consumption (kWh)			2012	0	0	£
	Bio Filters (Trickling Filters)		Capacity (p.e.)		Annual Electricity Consumption (kWh)			2012	0	0	£
	Chemical Phosphorous Removal		Dosed Flow (I/hr)		Annual Electricity Co		-	2012	176,323	282,258	£222,81
	Activated Sludge Process		Capacity (p.e)		Annual Electricity Co	nsumption (kWh)	2012	0	0	£(
Sewage	Enhanced Biological Phosphorous Removal		Capacity (p.e)		Annual Electricity Consumption (kWh)			2012	0	0	
Treatment	Sludge Digestion (new plant)		TTDS per annum		Annual Electricity Co	nsumption (kWh)	2012	0	0	£(
	Sludge Thickening - Centrifuge Dewatering		TTDS per annum		Annual Electricity Co	nsumption (kWh)	2012	0	0	£(
	Sludge Thickening Sludge Press		No of works		Annual Electricity Co			2012	0	0	£(
	Sludge Drying		TTDS per annum		Annual Natural Gas			2012	0	0	£(
	Sludge Mixing		Dosed Flow (I/hr)		Annual Electricity Co			2012	470.000	202.252	£(
ı	Tertiary Treatment		Capacity (MI/d)		Annual Electricity Co			2012	176,323	282,258	
	Small Sewage Treatment Works		Capacity (p.e)		Annual Electricity Co	risumption (KVVII)	2012	0	0	£(
Access to	Flooring		Floor area (m ²)					2012	91,977	-	£2,430
Assets	Guarding of Equipment		No of works		1.			2012	0	-	£(
	Lifting Equipment		No of plants		Annual Electricity Co	nsumption (kWh)	2012	0	0	£(
Civil	Access Road		Road Length (m)					2012	77,922		£5,041
Civil Engineering	Outfall Structures		No. of structures					2012	1,223	-	£32
	Tunnelling & Low Dig Techniques		Tunnel length (m)					2012	0	-	£(
	Environmental and Landscape		No of sites					2012	1,663		£108
Other	Remote Asset Monitoring (Telemetry) Systems		No. of works		Annual Electricity Co	nsumption (kWh)	2012	1,751	282,258	£214,760
Other	Security and Fencing		No. of installations		Annual Electricity Co	nsumption (kWh)	2012	0	0	£
	Site Investigation		No. of sites					2012	0		£
	Ancillary Works		No. of works					2012	0	-	£

t Present Cost of
Carbon £0
£0
£0 £0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£0
£222,817 £0
£0
£0
£0 £0
£0 £0 £219,338
£0
£2,430 £0 £0
05.044
£5,041 £32 £0
£108
£214,760 £0
£0 £0
£0





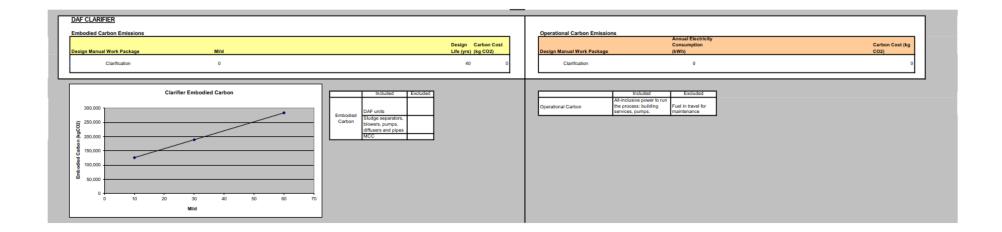
bodied Carbon Emissions		Operational Carbon Emissions
No. of sign Manual Work Package works	Design Life Total Embodied (yrs) Carbon (kg CO2)	Carbon Cost Design Manual Work Package (kg CO2lyr)
Ancilliary Works 0	40 0	No operational carbon associated with this item
	Included Excluded Connecting pipework; 50m 150mm DI	
	Fencing: 50m chain link 2.4m high, post and gake	
	Embodied Carbon Carbon Ciroling and Splitter Chamber; 2nc. Gate valves and 5nc. Bends (700kg cast iron) and a 2m by	
	2m by 2m concrete chamber with 300mm thick walls	



sign Manual Work Package	No. of Boreholes	Design Life Total Embodied (yrs) Carbon (kg CO2)	Operational Carbon Emissions Design Manual Work Package	Annual Electricity Consumption (kWh)	Carbon Cost (kg CO2/yr)
Boreholes	0	20 0	Boreholes	0	0
		Included Excluded Borehole with grouted in place Embodied Carbon Carbon Drumps valves, motors and MCC est pumping Concrete headworks			Included Excluded Alk-Inclusive Operational power to nut the Carbon services, pumps. Included Excluded Fuel in travel for process: building for services, pumps.

		Default Annual	
	Dosed Flow	Electricity	Carbon Cost
esign Manual Work Package	(l/hr)	(kWh)	(kg CO2/yr)
Arsenic Removal	0	0	0
Fluoridation	0	0	0
pH Correction	0	0	0
Iron & Manganese Treatment	0	0	0
Disinfection	0	0	0
Stabilisation & Conditioning	0	0	0

	Included	Excluded
	Bunded dosing area: concrete construction	Emergency shower / eyewash, control panel.
Embodied Carbon	Bulk storage tank: plastic construction	Access
Carbon	Pumped pipework	Control hardware
$ldsymbol{le}}}}}}}}}$	Delivery of tank and pipework to site	


\$250 \$200 \$200 \$150
(k 200 00 150
NO 100
Ö 50
50 100 150 200 250
Dosed Flow (liftr)

	Included	Excluded
Operational Carbon	Chemical delivery to site Dose pump power	Specific chemical manufacture Carrier flow if applicable
		Emissions from any sludge generated

	CARBON REL	ATIONSHIP	
		Dosed	
	teCO2	Flow (l/hr)	
	193	0.2	0
	193	1.0	8
	193	5.0	STW Carbon ulations for P
	193	10	6.5
	193	25	8 8
	193	50	N ig
	193	75	00 15
	193	100	STW Carbon Calculations for PR09
	387	200	_
			C
			User Input following Update to Carbon Calculations
			8
			8
			8
			8 8
			Towing Upda Calculations
			8-8
			W O
			50
			8
			ğ.
			t
			200
			_
Scaling factor relationship validity			
limits (Vhr)	0.2	200	
Scaling Factor (slope)	1.93	441	
Scaling Factor (intercept)	0	1	

	CARBON RE		
		Dosed Flow	
	teCO2/yr	(Vhr)	
	3.3	0.2	
	3.3	1.0	2
	6.6	5.0	8 0
	10	10	STW Carbon ulations for P
	27	25	0.8
	50	50	A ig
	73	75	S 2
	100	100	STW Carbon Calculations for PR00
	196	200	0
			User input following Update to Carbon
Scaling factor relationship validity			
limits (l/hr)	0.2	200	
Scaling Factor (slope)	0.	97	
Scaling Factor (intercept)	1.0	31	

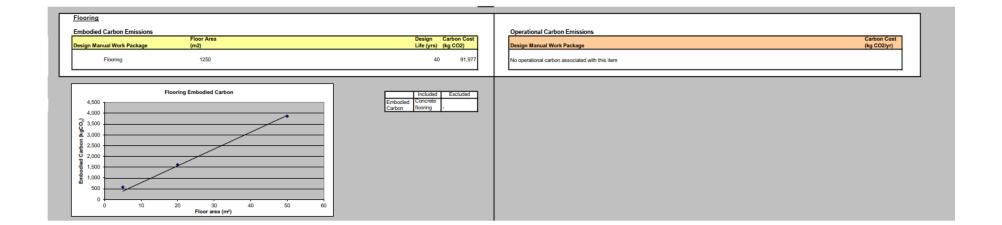
Note UKWIR sustain tool not used for comparison as cannot be compared directly given inclusion of chemicals.

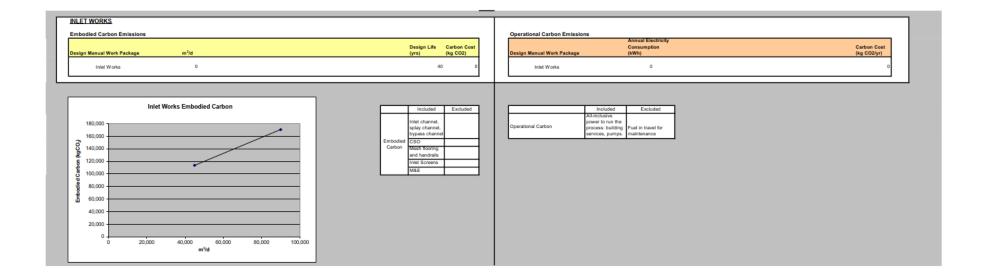
Embodied Carbon Emissions Design Manual Work Package	No. of sites	Design Life Carbon Cost (yrs) (kg CO2)	Operational Carbon Emissions Design Manual Work Package	Carbon Cost (kg CO2/yr)
Environmental and Landscape	1	15 1,663	No operational carbon associated with this item	
		Included Excluded		

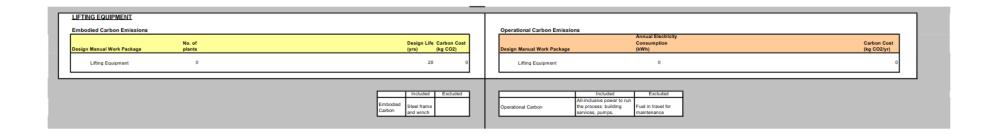
Equipment Guarding

Embodied Carbon Emissions

Design Manual Work Package No. of sites Life (yrs) (kg CO2)


Guarding of Equipment 0 20 0


Operational Carbon Emissions


Carbon Cost
Design Manual Work Package
(kg C02/yr)

No operational carbon associated with this item

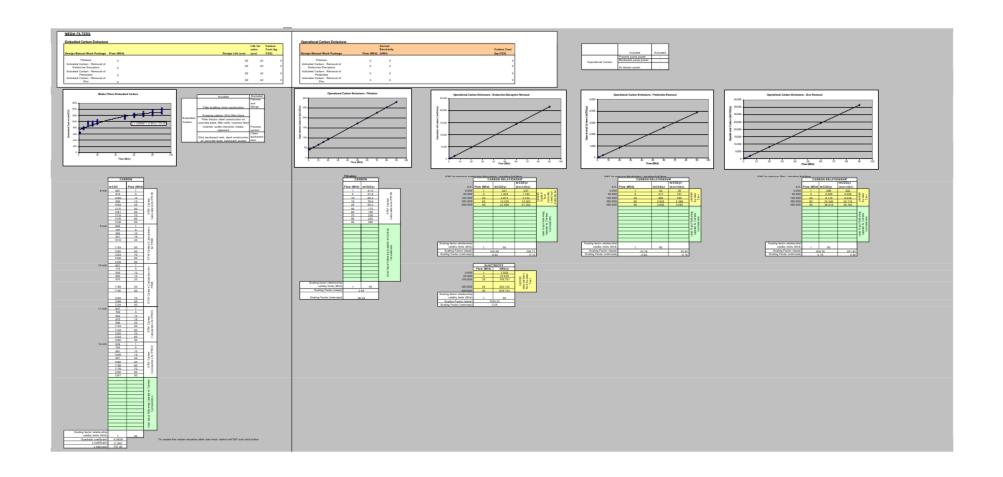
Included Excluded
Installation
of new
Carbon gate and
fencing -

MANHOLES
Embodied Carbon Emissions

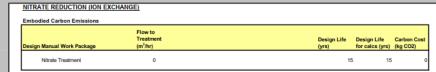
Design Manual Work Package Manholes

Uife (yrs) (kg CO2)

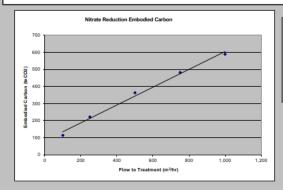
Manholes

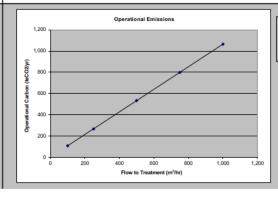

Operational Carbon Emissions

Operational Carbon Emissions

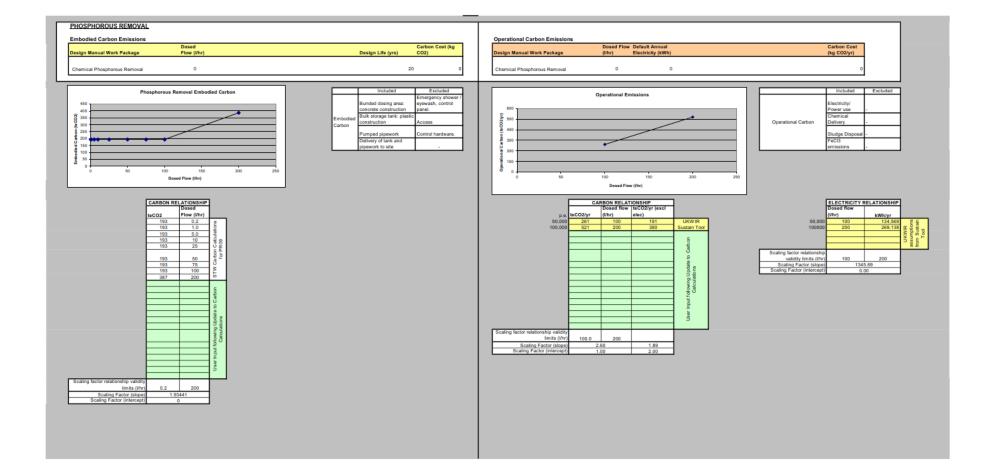

Operational Carbon Emissions

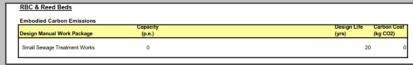
Design Manual Work Package (kg CO2)yr)

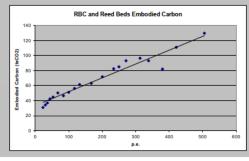

No operational carbon associated with this item


Monitoring and Telemetry Embodied Carbon Emissions Operational Carbon Emissions Annual Electricity Design Life Carbon Cost (yrs) (kg CO2) Carbon Cost (kg CO2/yr) No. of works Consumption (kWh) Design Manual Work Package Design Manual Work Package Remote Asset Monitoring (Telemetry) Systems 20 1,751 Remote Asset Monitoring (Telemetry) Systems 282,258 Included Excluded
All-inclusive
power to run the
process: building
services, pumps. Excluded Included Embodied MCC, Cabinet and cabling Operational Carbon

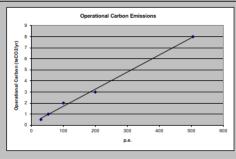
Operational Carbon Emissions Design Manual Work Package	Flow to Treatment (m3/hr)	Annual Electricity (kWh)		Carbon Cost (kg CO2)
Nitrate Treatment	0		0	



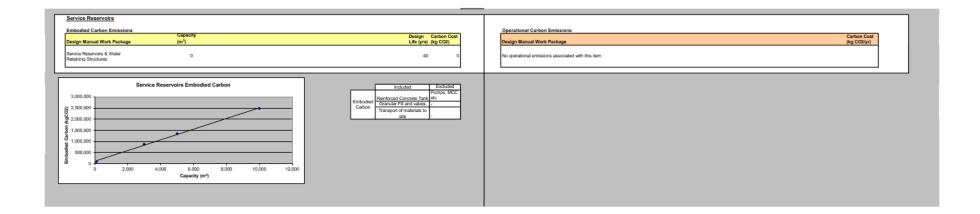

	Included	Excluded
	Treatment building: concrete base slab, steel wall and roof construction, steel pipework, pumps, strainers.	Internal walls, fixtures and fittings.
Embodied Carbon	IX Vessels: concrete slab, steel pressure vessels.	Pipework other than main process.
Carbon	Salt / Waste bund: high-sided concrete bund containing duty / assist salt bulk storage and duty waste tanks.	Media manufacture.
	New length of water main to form bypass	

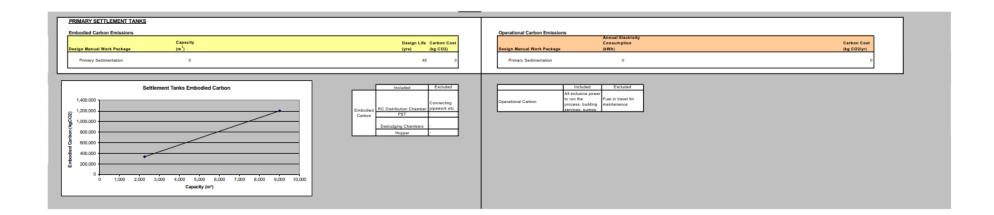

	Included	Excluded
	All-inclusive power to run the	Excided
perational Carbon	process: building services, booster pumps, regeneration, waste transfer.	Any emissions from salt residue
Carbon	Salt transport to bulk storage.	Salt manufacture

OUTFALL STRUCTURES Embodied Carbon Emissions			Operational Carbon Emissions	
Design Manual Work Package	No. of structures	Design Carbon Cost Life (yrs) (kg CO2)	Design Manual Work Package	Carbon Cost (kg CO2/yr)
Outfall Structures	1	40 1,223	No operational carbon associated with this item	
		Included Excluded		



	Capacity	Default Annual	Carbon Cost (kg
sign Manual Work Package	(p.e.)	Electricity (kWh)	CO2)
nall Sewage Treatment Works	0	0	0



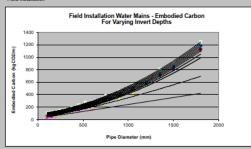

	Included	Excluded
	RBC: concrete base, size- dependent GRP or concrete tank, GRP cover, steel shaft and media holders, polypropylene	Pumping to treatment. Gravity flow is assumed.
Embodied Carbon	Reed bed: sand base, bed lining, lining protection, gravel fill, outlet chamber and ductile iron decant arm, transport of materials	
	Pipes: inlet, outlet and distribution	

	Included	Excluded
	RBC shaft motor	Process control and panel services
perational Carbon		Any emissions from reed bed process and sludge produced by RBC

Security and Fencing **Embodied Carbon Emissions** Operational Carbon Emissions Annual Electricity No. of works Carbon Cost Design Life (yrs) (kg CO2) Carbon Cost (kg CO2/yr) Consumption (kWh) Design Manual Work Package Design Manual Work Package 0 20 0 Security and Fencing Security and Fencing Included Excluded
Security doors,
padicicks, intruder
Embodied
Carbon
and access control
system
Gate and Fencing Included Excluded All-inclusive power to run the process: building services, pumps. Fuel in travel for maintenance Operational Carbon

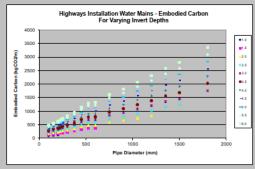
SEWERAGE PIPELINES

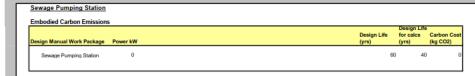
Embodied Carbon Emissions

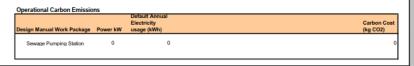

																	Design	
Design Manual Work	Length	Diameter	Depth	Field/Hig												Design	Life for	Carbon Cost
Package	(m)	(mm)	(m)	hway												Life (yrs)	calcs (yrs)	(kg CO2)
					1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0			
Sewer Rehabilitation	0	0	0	0								0				100	40	0
Sewage Pumping Stations	0	0	0	0								0				100	40	0

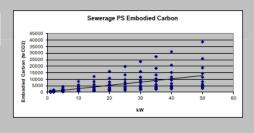
Operational Carbon Emissions

Design Manual Work Package	Carbon Cost (kg CO2)

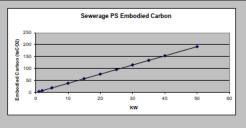

No operational carbon associated with this item No operational carbon associated with this item


Field Installation




	Included	Excluded
Embodied Carbon	Pipes: materials, transport to site, bed, surround and trench reinstatement	Materials other than VC or Ductile Iron
Carbon	Trench reinstatement	CSOs
	Manholes. Covers and frames	Pumping stations

Highways Installation



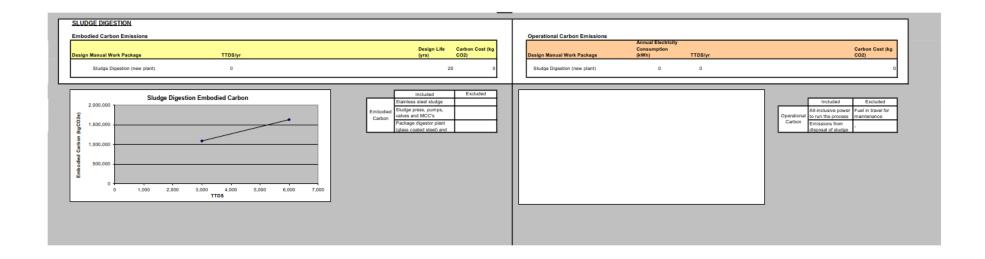
	Included	Excluded
$\overline{}$	Concrete blinding, base and	Step irons
Embodied Carbon	Pre-cast concrete rings and roof slab	
	Pipework incoming and	Pump

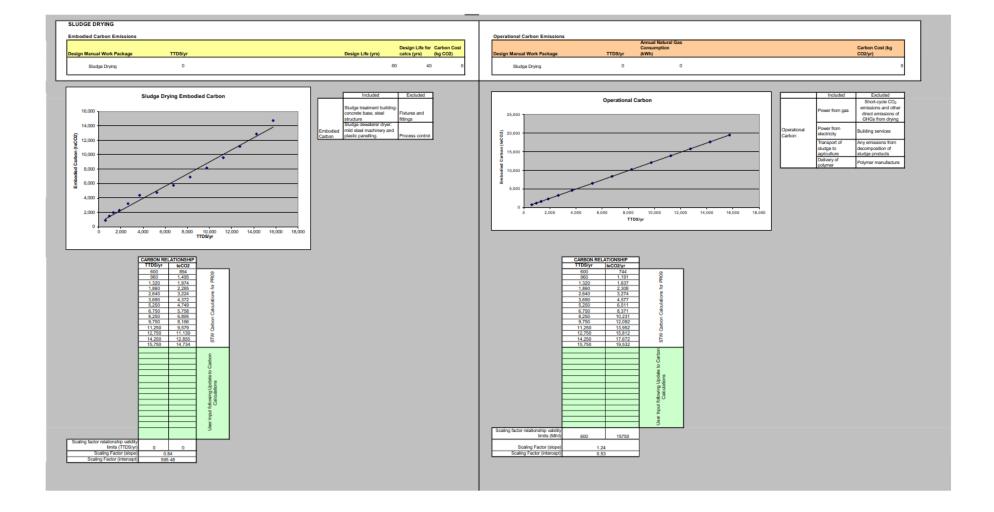
	Included	Excluded
Operational Carbon	Pump power electricity	Maintenance and inspection

Site Investigation

Embodied Carbon Emissions

Design Manual Work Package No. of sites Design Life (kg CO2)

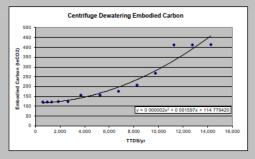

Site Investigation 0 20 0

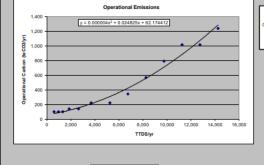

Included Embodied Carbon associated with this item

Operational Carbon Emissions

Design Manual Work Package Carbon Cost (kg CO2)

No operational carbon associated with this item




Embodied Carbon Emissions

Design Manual Work Package	TTDS/yr	Design Life (yrs)	Design Life t calcs (yrs)	for Carbon Cos (kg CO2)	it
Sludge Thickening - Centrifuge dewatering	0		60	40	0

Operational Carbon Emissions		Default Annual	
Design Manual Work Package	TTDS/yr	Electricity (kWh)	Carbon Cost (kg CO2)
Sludge Thickening - Centrifuge dewatering	0	0	

	Included	Excluded
Embodied	Sludge treatment building: steel construction on concrete slab	Fixtures and fittings
Carbon	Centrifuge machines: steel construction	Odour control. Process control. Conveyors.

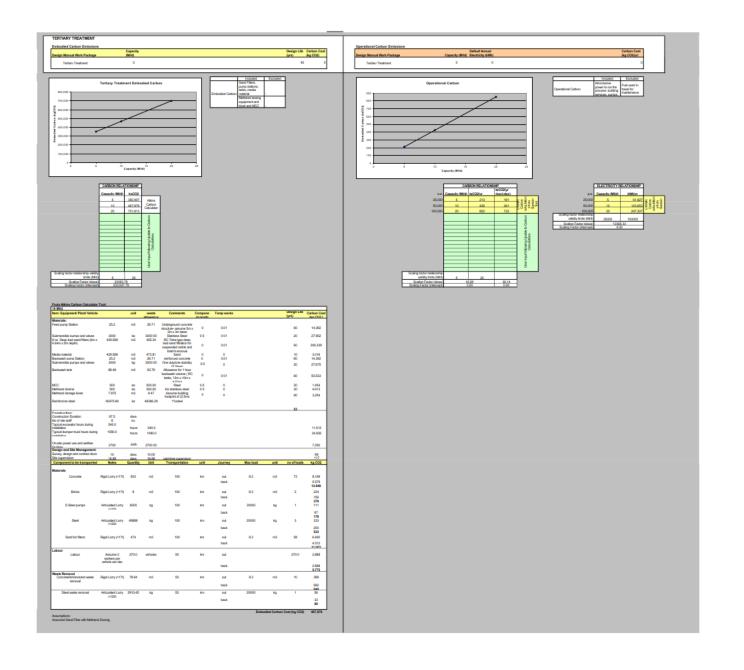
	CARBON RE	ELATIONSHIP	1	
	TDS/yr	teCO2/yr	1	
	600	102		1
	960	102	8	
	1,320	102	20	
	1,860	142	ğ	
	2,640	142	- 8	
	3,690	224	20	
	5,250	224	PR09	
	6,750	346	8 0	
	8,250	570	1 2	
	9,750	794	STW Carbon Calculations for PR0.0	
	11,250	1,017		
	12,750	1,017	60	
	14,250	1,241		
			_	1
			g c	
			848	
			User Input following Update to Carbon Calculations	
			984	
			윤용교	
			280	
			35	
Scaling factor relationship validity				
limits (TDS/yr)	600	14250		
Quadratic coefficient	0.000004			
x coefficient	0 024825			To
v intercept	62.174412			

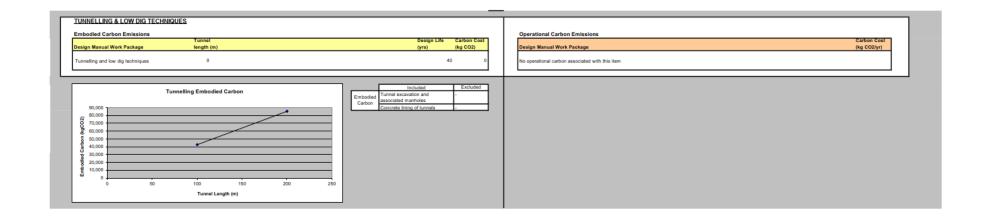
To update the carbon equation after user input, select cell Q60 and click button

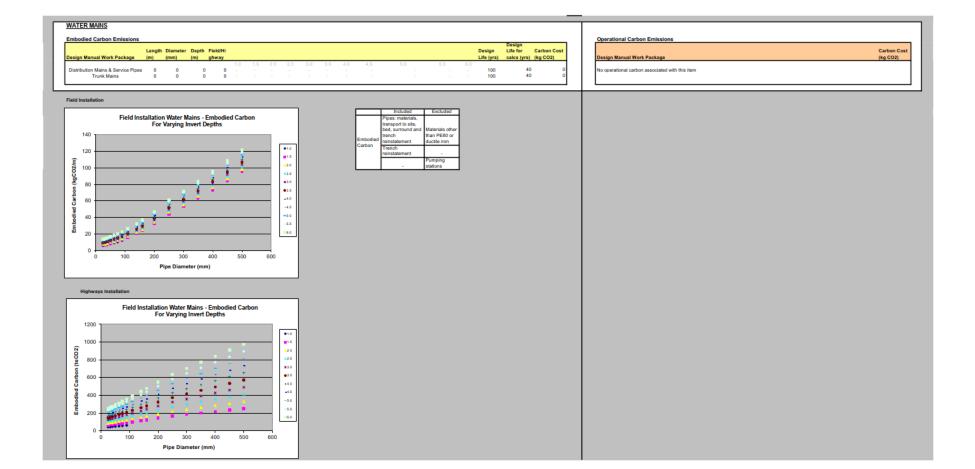
TTOSLY 16CO2 600 121 960 121 1,320 121 1,320 121 1,860 123 3,660 156 0 6,750 176 0 6,750 176 0 6,750 266 11,250 266 11,250 266
960 121
1,320 121 8 8 1,360 123 9 1 23 9 1 23 9 1 23 9 1 23 9 1 23 9 1 23 9 1 24
1,860 123 28 2,640 123 3 3,690 156 5,250 156 6,750 176 8,250 207 9,750 208 11,950 2412
2,640 123 7 3,690 156 7 5,250 156 7 6,750 176 8 8,290 207 8 9,750 268 ≥
3,690 156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5,250 156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6,750 176 5 d. 8,250 207 9,750 268
8,250 207 9,750 268 11,250 412
9,750 268 O
11 250 412
14,250 414
Uber Input following Update to Carbon Calculations
8
28
2 8
2.3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30
9.8
2 %
1 E
<u> </u>
Scaling factor relationship validity
limits (TTDS/yr) 600 14250
Quadratic coefficient 0.000002
x coefficient 0.001597
y intercept 114.77942

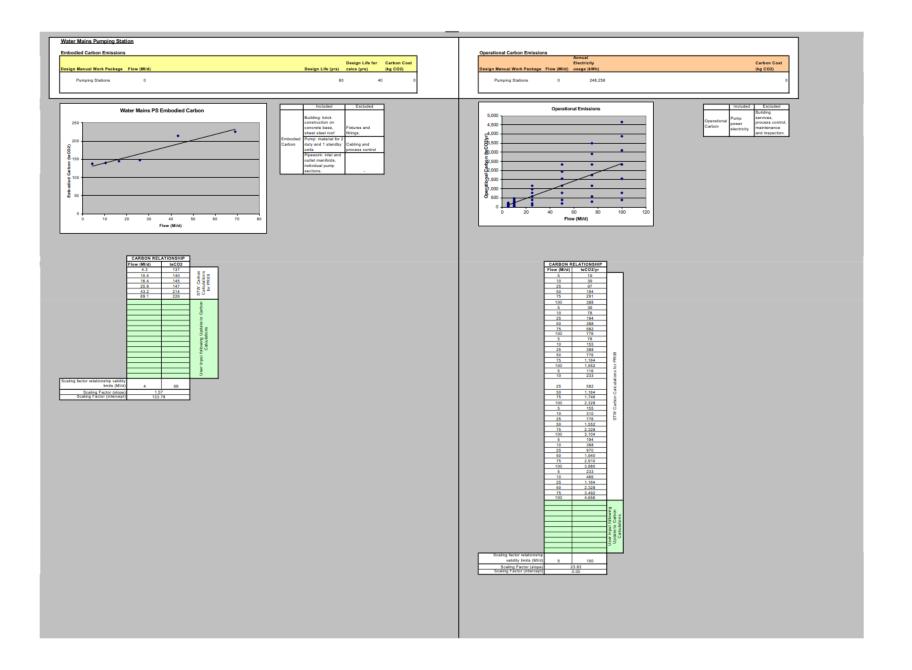
To update the carbon equation after user input, select cell D63 and click button

Embodied Carbon Emissions | No. of Design Manual Work Package works | Carbon Cost (yrs) | Carbon Cost (yr


	Included	Excluded
Embodied Carbon	Sludge press	Pumps and valves
	Associated MCC	


			allowan ce		nent prodn	works			Design Life (yrs)	(kg CO2)
Materials:					DI OGII					
Rotomat SP4 Strainpress RC slab 20 m2 x 300 deep.	6	m3	6.36	Reinforced concrete	0	0.01			60	3,427
Outy and Standby or Duty and Assist Rotomat SP4 Strainpress has capacity of 60 m3/h at 6% DS	1000	kg	1000	Stainless steel	0.65				20	10,148
sach. Steel for RC	48	ka	51.072							
MCC	500	kg kg	500	Steel					20	969
ACC.	500	KQ	500	Steel					29	909
Construction:									29	
Construction Duration	10.0	days								
No of site staff	4	no.								
Typical excavator hours during	80.0	hours	80.0							1.705
nstallation	80.0	nours	80.0							1,705
Typical dumper truck hours during nstallation	80.0	hours	80.0							2,588
On-site power use and welfare	200	kWh	200.00							537
acilities										
Design and Site Management: Survey, design and contract docs	5	days	5.00							35
	_	days		full-time						35
Site supervision	2.50	days	2.50	supervision						17
Component to be transported	Notes	Quantity	Unit	Transportatio n distance	unit	Journey	Max load	unit	no of loads	kg CO2
Materials										
Steel, MCC	Articulated Lorry (>33t)	551	kg	100	km	out	20000	kg	1	111
						back				67
Concrete										178
Concrete	Rigid Lorry (>17t)	6	m3	100	km	out	8.3	m3	1	112
	(>1/1)					back				78
						Daux				190
Strainpress	Articulated	80	kg	800	km	out	20000	kg	1	889
	Larry (>33t)							9		
						back				534
										1.422
abour										
Labour	Assume 2 workers per vehicle per	20.0	vehicles	50	km	out			20.0	214
	day									
						back				214
Waste Removal										428
	Digital con-	0.00	2	50	line.	and.	0.0	0		20
Excavated material	Rigid Lorry (>17t)	0 36	m3	50	km	out	83	m3	1	39
	(>1/1)					back				56


Assumptions: 1x 60m3/h press


Operational Carbon Emissions	Annual Electricity	
Design Manual Work Package	Consumption (kWh)	Carbon Cost (kg CO2)
Sludge Thickening - Sludge Press	0	

	Included	Excluded
Operational Carbon		Fuel in travel for maintenance

Waste Street	Parameteps (N) of weeks by resisting or comparison to the sent column.	Properties of weath by volume in comparison of the properties.
Pantic	11.176	E-100
Jours	19:3%	8.40
Street	2.0%	8.676
Farmer craft of	6.0%	8.664
Generalis	6.0%	11-0000
Insolution	6.0%	1.045
Serv	1.0%	1.00

Sampaner	Houge Intensity	Garteninsoniny			
	Militar	to Elizabe			
tion for the beau	7.40	2.00			
Pag. 1975	268	410			
Montal	Brang-Intensity	Gartes to	turnity	Standily	
	16.75g	ing littiving	ing 60mm²	lagior*	
Serveral Serverals	0100	9.00	60	244	
Subtimus Commits	181	9.69	500	244	
Samuel	44	100	1000	106	
Service Prints Service Services	2 PT	2000 2000	9.4	194 194	
Stations Steel	84.6	4.6	-	100,000	
NATION STREET		168		100	
Gastron		240		600,700	
imbacks (Served America)	an a proof	9469	101.44	200	
Ner		1.0			
Epocials main (flutation fluxion) and softenius; (mattern pate)		5.00			
Filmelana Shara Raintirmat Plante (GRP)		136			
oues fluctional Pauli (Life) pur efficações antinos eben as artist proportions plumas		126		1867.4	
to the district of the last		6.6	60	200	
Street and Company		429		-	
more of the		110	1000	100	
run .		BECODERY.			

William	ing 600, per miles	kg 600, per km				
Petrolian 1.6.4 (Filtra	1.160	0.010				
Name of the orbital factor	11.000					
Dissel Freight Transport Emission A	was					
Wester	Swignister	Fuel parties (6)	Fuel denumber	DO: Entratement	Retirement Surry	ring: Expanity
					-	**
Name of the	66			1/17%		84
Nigoti any (1-17)	10%			1.10		44
**************************************					Marian Marian	
Site Websites and Plant (Weights or	Air to valida antigiri) Gilo Resissens					
	destroyed					
Articulated Sump Fours (Studies Resource: Medium 11, Minorana	100					
instances and a start	2					

Name of Congressor	Heren	Distance then Source Sites		
So, rutto Name Pipe - Cardia Inc.		-		
Natur Page 1999		400		
Resir	For living of pipes	100		
Serveral records		100		
Stead	Assumption by Mill steel	100		
Stuiriess Steel		100		
Sound Strenuler 19		100		
Sophul-Ritumen		100		
NAME OF THESE		100		
Purson - married desired		***		
Labour	Aways controlling desires of also seek force	-		
Standard Calcult Statutes	Uport for reluced lampson commonwells	100		
Search instead by	For exceptant and seats materials	-	-	

Steelige Life	₩					
	200	2810	2001	260	2010	20 X
18	6.0676	2-0066	0.000	0.0007	0.000	61801
26	6.0862	2445	0.046	0.0001	6.0006	6.040
26.	6.060	24461	0.054	0.046	6091	6.0605
14.	6.000	9444	2004	1007	5.0021	5.00%
**	610%	9689	0.096	01064	61081	61907
Swatter	6.060	2496	9.7604	4700	6796	62961

And the control of th